Standard Gibbs' energy of formation of $LaFeO_3$ and comparison of stability of $LaMO_3$ (M = Mn, Fe, Co or Ni) compounds

O. M. SREEDHARAN

Metallurgy Programme, Reactor Research Centre, Kalpakkam, Tamilnadu 603102, India

M. S. CHANDRASEKHARAIAH

Water Chemistry Division, Bhabha Atomic Research Centre, Trombay 400085, India

The thermodynamic stability of LaFeO₃ at high temperatures is of interest in materials technology. For evaluating the thermodynamic data of LaFeO₃, the e.m.f. of the following galvanic cell was studied over the range 1094 to 1299 K: Pt, LaFeO₃, Fe, La₂O₃/15 mol % CaO stabilized ZrO₂/FeO, Fe, Pt. For the galvanic cell reaction $\frac{1}{2}$ La₂O₃ + 3/2 FeO $\Rightarrow \frac{1}{2}$ Fe + LaFeO₃, the standard Gibbs' energy change, ΔG_r^0 , was measured to be ($\Delta G_r^0 \pm 0.34$) (kJ) = - 22.67 -0.011 55 *T*(K) for the passage of 3 F of electricity. From this, the stability of LaFeO₃ with respect to La₂O₃ and FeO as well as with La₂O₃ and Fe₂O₃ was computed and compared with other equilibrium measurements on LaFeO₃ reported in the literature. In addition, a comparison was made on the stabilities of LaMO₃ compounds (where M = Mn, Fe, Co or Ni) with respect to dissociation into La₂O₃ and MO making use of the published data on other compounds. Likewise a comparison of disproportionation of LaFeO₃ and LaMO₃ into their respective sesquioxides was also made.

1. Introduction

The thermal and thermodynamic stability of the perovskite type of compounds of the formula LaMO₃ where M is Mn, Fe, Co or Ni, are of importance as these materials are used as electrodes in magnetohydrodynamic (MHD) generators and as catalysts in pollution control [1, 2]. The thermodynamic stability of LaMnO₃ with respect to reduction was studied by Nakamura et al. [3] using thermogravimetry, Kamegashira et al. [4] using electrical conductivity, and Sreedharan et al. [5] using a solid electrolyte e.m.f. method. The phase transition and thermodynamic stability of LaCoO₃ was studied using a solid electrolyte e.m.f. method by Sreedharan and Chandrasekharaiah [6] whereas Nakamura et al. studied the reduction of LaCoO₃ as well as LaNiO₃ by isothermal thermogravimetry. The oxygen potential in the system $LaFeO_3/La_2O_3/Fe$ was measured by Katsura et al. [7] and Leontev et al. [8] using a gas equilibration technique and by Nakamura et al. [3] using thermogravimetry. Owing to better precision of the e.m.f. technique [9] it was adopted for the study of this system, the results of which are presented here. A comparison of the stability of LaFeO₃ with other LaMO₃ compounds has also been made.

2. Experimental procedures

The compound LaFeO₃ was synthesized from coprecipitated hydroxides as per the procedure adopted by Foex [10]. The starting materials for this were La₂O₃ and Fe₂O₃ (purity of better than 99.99%, Johnson-Matthey, UK). An equal mass mixture of

 $LaFeO_3$, La_2O_3 and Fe was compacted into pellets of 10 mm diameter and 3 mm thickness at a pressure of 100 MPa. The coexistence of these three phases was verified by X-ray diffraction (XRD) analyses of the pellets after heating them to 1273 K for 24 h in purified argon. A 4:1 mixture of Fe and Fe₂O₃ was likewise compacted into pellets of similar dimensions which were then sintered in evacuated and sealed silica ampoules at 1273 K for 24 h. The iron and wüstite phases were confirmed by XRD analysis. Pellets of 15 mol % CaO stabilized ZrO₂ (15 CSZ) prepared from reagent grade CaCO₃ and ZrO₂ (greater than 99.99% purity) and having the dimensions 12 mm diameter and 3 mm thickness were used as solid electrolytes. The density of the pellets was better than 98%. An open-cell-stacked-pellet assembly was employed for the galvanic cell e.m.f. measurements. A calibrated Pt-10% Rh/Pt thermocouple was used to measure the temperature. Only the e.m.f. readings which were reproducible on subsequent heating cycles were taken. The other experimental details are described elsewhere [11-13].

3. Results and discussion

The e.m.f. of the galvanic cell

Pt, LaFeO₃, Fe, La₂O₃/15 CSZ/FeO, Fe, Pt (I)

over the range 1094 to 1299 K shown in Fig. 1 can be fitted into the following least squares expression:

 $(E \pm 1.17) (mV) = 78.31 + 0.039 91 T(K) (1)$

For the passage of 3F of electricity, the standard

Figure 1 The e.m.f. of the cell Pt, La_2O_3 , Fe, $LaFeO_3/15CSZ/Fe_xO$, Fe, Pt.

Gibbs' energy change, ΔG_r^0 for the galvanic cell reaction

$$\frac{1}{2}La_2O_3 + 3/2 \text{ FeO} \rightleftharpoons \frac{1}{2}Fe + LaFeO_3$$
 (2)

is given in Table I. Using the values for the standard Gibbs' energy of formation, $\Delta G_{\rm f}^0$ of FeO assessed by Giddings and Gordon [14], $\Delta G_{\rm r}^0$ for the reaction

$$\frac{1}{2}La_2O_3 + Fe + \frac{3}{4}O_2 \rightleftharpoons LaFeO_3$$
 (3)

was computed and is shown in Table I along with those derived from the gas equilibrium measurements by Katsura *et al.* [7] and Leontev *et al.* [8] and from thermogravimetry by Nakamura *et al.* [3]. The agreement amongst the four sets of data is quite reasonable. However, the individual slope and intercept values from Leontev *et al.* are in considerable disagreement with those from others. The log P_{O_2} values at 1273 K for a coexisting phase mixture LaFeO₃/Fe/La₂O₃ in Table II shows that the value from Leontev *et al.* differ from that of others by more than their quoted precision. To make an assessment of the individual values of the slopes and intercepts for the oxygen potential in the three-phase mixture $LaFeO_3/Fe/La_2O_3$, the standard Gibbs' energy change for the reaction

$$\frac{1}{2}La_2O_3 + \frac{1}{2}Fe_2O_3 \rightleftharpoons LaFeO_3$$
(4)

was calculated and is given in Table I. It can be seen from the Table that the value of $80 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$ from Leontev *et al.* [8] for the ΔS^0 of the solid–solid Reaction 4 is higher than those from other investigators. Generally, ΔS^0 for the solid–solid reaction should be a smaller positive value. The ΔG_r^0 values for the relevant equilibria of the couples FeO/Fe₃O₄ and Fe₃O₄/ Fe₂O₃ used for the computation of $\Delta G_r^0(4)$ are also listed in Table I.

To make a comparison of the thermodynamic data of LaFeO₃ with those of LaCoO₃, the results of e.m.f. studies employing LaCoO₃ by Sreedharan and Chandrasekharaiah [6] were used. From thermogravimetric studies, it was pointed out by Nakamura *et al.* [3] that La₂CoO₄ and CoO coexist with LaCoO₃. Further, the stability of La₂CoO₄ with respect to reduction to La₂O₃ and Co was determined from e.m.f. studies by Sreedharan and Pankajavalli [15]. The above sets of data were compiled in Table III to evaluate ΔG_r^0 for the reaction

$$\frac{1}{2}\text{La}_2\text{O}_3 + \text{CoO} + \frac{1}{4}\text{O}_2 \rightleftharpoons \text{LaCoO}_3 \tag{5}$$

In this computation the values of ΔG_{Γ}^{0} of NiO assessed by Kellogg [16] (Table III) were used. There are two equations for ΔG_{r}^{0} of Reaction 5 corresponding to the two forms of LaCoO₃ in the respective temperature ranges of stability. The log P_{O_2} value at 1273 K for the mixture LaCoO₃/La₂CoO₄/CoO from e.m.f. [6] and from thermogravimetry [3] are compared in Table II. It should be noted that Sreedharan and Chandrasekharaiah [6] wrongly attributed the e.m.f. to an equal mass mixture of LaCoO₃/La₂O₃/CoO. However, steady e.m.f. could be observed only after 24 h

TABLE I Standard Gibbs' energy of formation per mole of $LaFeO_3$ from La_2O_3 and Fe_2O_3 or Fe

Reactions	ΔG^0 (kJ)	Precision (±kJ)	Remarks
$1. \frac{1}{2}La_2O_3 + 3/2 \text{ FeO} \rightleftharpoons \frac{1}{2}Fe + LaFeO_3$	-22.67 - 0.01155T	0.34	This work (from cell reaction)
2. Fe $+\frac{1}{2}O_2 \rightleftharpoons FeO$	$-261.30 + 0.063 \ 30T$	1.00	[14]
3. 3FeO + $\frac{1}{2}O_2 \rightleftharpoons Fe_3O_4$	$-311.87 + 0.123 \ 00T$	0.40	[14, 19]
4. $2Fe_3O_4 + \frac{1}{2}O_2 \rightleftharpoons 3Fe_2O_3$	-247.05 + 0.140 90T	1.50	[19-21]
5. $\frac{1}{2}La_2O_3 + \frac{1}{2}Fe_2O_3 \rightleftharpoons LaFeO_3$	(a) $-8.19 - 0.044 \ 40T$	1.40	This work (com- puted from Equations 1 to 5a)
	(b) $-51.40 - 0.012 \ 68T$	2.50	From Katsura <i>et al.</i> [7] (computed from Equations 2 to 4, 5b)
	(c) 29.33 - 0.079 98 <i>T</i>	-	From Leontev <i>et al.</i> [8] (computed from Equations 2 to 4, 5c)
	(d) $-40.07 - 0.019 \ 98T$	2.50	From Nakamura et al. [3]
$6, \frac{1}{2}La_2O_2 + Fe + \frac{3}{2}O_2 \rightleftharpoons LaFeO_2$	(a) $-414.62 + 0.083 40T$	1.90	This work
2 2 3 4 2 2	(b) $-457.80 + 0.115 \ 10T$	1.00	[7]
	(c) $-377.10 + 0.047 \ 80T$	-	[8]
	(d) $-446.50 + 0.107 \ 80T$	1.00	[3]

TABLE II Equilibrium oxygen pressure at 1273 K in the coexisting phases bearing LaMO₃ (M = Fe, Co, Ni or Mn)

Coexisting phases	log P _{O2} (atm) at 1273 K	Precision $(\pm kJ mol^{-1})$	Technique	Reference
LaFeO ₃ , Fe, La ₂ O ₃	- 16.90	0.10	Solid electrolyte e.m.f.	This work
	- 17.03	0.05	Gas equilibrium measurements	[7]
	- 17.30	-	Gas equilibrium measurements	[8]
	-16.92	0.05	Thermogravimetry	[3]
$LaCoO_3$, La_2CoO_4 , CoO	-6.64	0.09	Solid electrolyte e.m.f.	[6]
	-7.00	0.20	Thermogravimetry	[3]
LaNiO ₃ , La ₂ NiO ₄ , NiO	-6.00	0.20	Thermogravimetry	[3]
LaMnO ₃ , Mn, La ₂ O ₃	- 14.02	0.07	Solid electrolyte e.m.f.	[5]
	- 14.61	-	Electrical conductivity	[4, 22]
	- 15.05	0.05	Thermogravimetry	[3]

heating of about 1273 K. The reason for this was later found to be due to the *in situ* formation of La_2CoO_4 from La_2O_3 and excess CoO in the equal mass mixture resulting in the co-existence of $LaCoO_3$, La_2CoO_4 and CoO. These observations were taken into account in the computations given in Table III.

For comparing the stability of LaFeO₃ with LaNiO₃, a single value of log P_{O_2} obtained for the coexisting mixture LaNiO₃/La₂NiO₄/NiO at 1273 K reported by Nakamura *et al.* [3] (Table II) was used. This equilibrium could be represented as follows:

$$\frac{1}{2}La_2NiO_4 + \frac{1}{2}NiO + \frac{1}{4}O_2 \rightleftharpoons LaNiO_3 \qquad (6)$$

Making use of the Gibbs' energy data for the formation of La₂NiO₄ from La₂O₃ and NiO reported by Sreedharan *et al.* [17] in conjunction with the value of -0.6 (atm) for log P_{O_2} [3] for the Reaction 6 at 1273 K, a value of -10.1 kJ mol⁻¹ was calculated for the following reaction.

$$\frac{1}{2}La_2O_3 + NiO + \frac{1}{4}O_2 \rightleftharpoons LaNiO_3$$
(7)

Likewise the stability of LaFeO₃ could be compared with that of LaMnO₃ from thermogravimetry by Nakamura *et al.* [3], from electrical conductivity by Kamegashira *et al.* [4] and from e.m.f. measurements by Sreedharan *et al.* [5] for the equilibrium reaction

$$\frac{1}{2}La_2O_3 + MnO + \frac{1}{4}O_2 \rightleftharpoons LaMnO_3$$
 (8)

In order to assess the existence of a systematic trend

in the ΔG_r^0 for the reaction

$$\frac{1}{2}La_2O_3 + MO + \frac{1}{4}O_2 \rightleftharpoons LaMO_3$$
 (9)

where M = Fe, Co, Ni or Mn, the ΔG_r^0 values for Reaction 9 are compared in Table IV. It can be seen from the table that the stability of LaMO₃ with respect to MO and La₂O₃ decreases from iron to nickel whereas the manganese compound has a stability which is intermediate between that of iron and cobalt. The fact that the stability of the +3 state of the transition metal ion decreases from manganese to nickel makes it difficult to compare the $\Delta G_{r,ox}^0$ for the formation of LaMO₃ from La₂O₃ and M₂O₃ except in the case where M is Mn or Fe as shown below (cf. Reaction 4).

$$(\Delta G_{r,ox,LaFeO_3}^0 \pm 1.40) \text{ (kJ mol}^{-1})$$

= -8.19 - 0.044 39*T* (K) (10)
$$(\Delta G_{r,ox,LaMnO_3}^0 \pm 0.67) \text{ (kJ mol}^{-1})$$

= -75.12 + 0.012 60 *T* (K) (11)

At 1273 K, both LaMnO₃ and LaFeO₃ have about the same stability (-59 and -64 kJ mol⁻¹) with respect to disproportionation into their sesquioxides. This would enable one to estimate a value of about -60 kJ mol⁻¹ for the $\Delta G_{r,ox}^0$ of LaCrO₃ which in turn corresponds to a log P_{O_2} value of -25.0 (atm) for the coexisting mixture LaCrO₃/La₂O₃/Cr making use of

TABLE III Standard Gibbs' energy of formation per mole of LaCoO₃ from La₂O₃ and CoO

Reaction	ΔG_r^0 (kJ)	Precision (± kJ)	Remarks
$1. 2LaCoO_3 + Ni \rightleftharpoons La_2CoO_4 + CoO + NiO$	$4.59 - 0.040 \ 12T^*$	0.77	Sreedharan <i>et al</i> . [6]
	$-26.09 - 0.014 \ 67T^{+}$	0.77	(from cell reaction)
2. Ni + $\frac{1}{2}O_2 \rightleftharpoons$ NiO	$-234.30 + 0.085 \ 30T$	0.30	Kellogg [16]
3. $La_2O_3 + CoO \rightleftharpoons La_2CoO_4$	$12.24 - 0.014 \ 90T$	1.02	Sreedharan <i>et al.</i> [15]
$4. \frac{1}{2}La_2O_3 + CoO + \frac{1}{4}O_2 \rightleftharpoons LaCoO_3$	$-113.33 + 0.055 \ 26T^*$	1.05	Computed from
	$-97.99 + 0.04254T^{\dagger}$	1.05	Equations 1 to 3

*For the range 1100 to 1200 K.

†For the range 1250 to 1325 K.

TABLE IV Standard Gibbs' energy of formation per mole of $LaMO_3$ from La_2O_3 and MO (M = Mn, Fe, Co or Ni)

M	$\Delta G_{ m r}^0~({ m kJ})$	Temperature range (K)	Precision (±kJ)	$\Delta G^0_{\rm r,1273K}$ (kJ mol ⁻¹)	Remarks
Mn	$-168.17 + 0.065 \ 00T$	1064-1308	0.42	-85.5	Sreedharan et al. [5]
Fe	$-153.32 + 0.020 \ 10T$	1094-1299	0.84	-127.7	This work
Co	$-113.33 + 0.055 \ 26T$	1100-1200	1.05	*	Computed from Table III
Co	-97.99 + 0.04253T	1250-1325	1.05	-43.9	Computed from Table
Ni	— 10.1†	1273	1.50	- 10.1	Nakamura et al. [3]

*The low temperature form of $LaCoO_3$ is unstable at 1273 K.

†Only one value of ΔG_{f}^{0} was available at 1273 K for LaNiO₃ from Nakamura *et al.* [3].

the $\Delta G_{\rm f}^0$ of Cr₂O₃ assessed in the literature [18]. Values of log $P_{\rm O_2}$ in this range are rather difficult to measure directly.

Acknowledgements

The authors are grateful to Dr P. Rodriguez, Head of the Metallurgy Programme and to Shri J. B. Gnanamoorthy, Head of the Chemical Metallurgy Section, Metallurgy Programme, RRC for their interest and encouragement during the course of this work.

References

- 1. D. B. MEADOWCRAFT, P. G. MEIER and A. C. WARREN, *Energy Conversion* 12 (1972) 145.
- 2. W. F. LIBBY, Science 171 (1971) 499.
- 3. T. NAKAMURA, G. PETZOW and L. J. GAUCKLER, Mater. Res. Bull. 14 (1979) 649.
- 4. N. KAMEGASHIRA, Y. MIYAZAKI and Y. HIYOSHI, Mater. Lett. 2 (1984) 194.
- O. M. SREEDHARAN, R. PANKAJAVALLI and J. B. GNANAMOORTHY, High Temp. Sci. 16 (1983) 251.
- 6. O. M. SREEDHARAN and M. S. CHANDRA-SEKHARAIAH, Mater. Res. Bull. 7 (1972) 1135.
- 7. T. KATSURA, K. KITAYAMA, T. SUGIHARA and N. KIMIZUKA, Bull. Chem. Soc. Jpn 48 (1975) 1809.
- S. A. LEONTEV, YU. P. VOROBEV, A. M. BALBECHOR, A. N. MEN, A. YA. CHERRONENKIS and G. I. CHUFAOV, *Dokl. Akad. Nauk. USSR* 209 (1973) 618.
- 9. O. KUBASCHEWSKI, High Temp. High Press. 4 (1972) 1.

- 10. M. FOEX, A. MANCHERON and M. LINE, Compt. Rend. 250 (1960) 3027.
- E. S. RAMAKRISHNAN, O. M. SREEDHARAN and M. S. CHANDRASEKHARAIAH, J. Electrochem. Soc. 122 (1975) 328.
- O. M. SREEDHARAN, M. S. CHANDRASEK-HARAIAH and M. D. KARKHANAVALA, *High Temp.* Sci. 9 (1977) 109.
- 13. O. M. SREEDHARAN, PhD thesis, University of Bombay (1975).
- R. A. GIDDINGS and R. S. GORDON, J. Amer. Ceram. Soc. 56 (1973) 111.
- 15. O. M. SREEDHARAN and R. PANKAJAVALLI, J. Mater. Sci. Lett. 3 (1984) 388.
- 16. H. H. KELLOGG, J. Chem. Eng. Data 14 (1969) 41.
- O. M. SREEDHARAN, M. S. CHANDRASEK-HARAIAH and M. D. KARKHANAVALA, *High Temp.* Sci. 8 (1976) 179.
- O. M. SREEDHARAN and C. MALLIKA, "A Compilation of Gibbs' Energy Data for 40 Metal Oxide Buffers", Report No. RRC-69 (Reactor Research Centre, Kalpakkam, 1984) p. 21.
- 19. G. G. CHARATTE and S. N. FLENGAS, J. Electrochem. Soc. 115 (1968) 796.
- 20. A. V. RAMANA RAO and V. B. TARE, *Trans. Inst. Min. Met.* 82 (1973) C34.
- 21. R. N. BLUMENTHAL and D. H. WHITMORE, J. Amer. Ceram. Soc. 44 (1961) 508.
- 22. O. M. SREEDHARAN, R. PANKAJAVALLI and J. B. GNANAMOORTHY, *Mater. Lett.* 2 (1984) 547.

Received 26 July 1985

and accepted 8 January 1986